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ABSTRACT

It is a challenge to classify protein-coding or non-
coding transcripts, especially those re-constructed
from high-throughput sequencing data of poorly
annotated species. This study developed and
evaluated a powerful signature tool, Coding-Non-
Coding Index (CNCI), by profiling adjoining nucleo-
tide triplets to effectively distinguish protein-coding
and non-coding sequences independent of known
annotations. CNCl is effective for classifying incom-
plete transcripts and sense-antisense pairs. The
implementation of CNCI offered highly accurate
classification of transcripts assembled from
whole-transcriptome sequencing data in a cross-
species manner, that demonstrated gene evolu-
tionary divergence between vertebrates, and
invertebrates, or between plants, and provided
a long non-coding RNA catalog of orangutan.
CNCI software is available at http://www.bioinfo.
org/software/cnci.

INTRODUCTION

The recent progress in the ENCODE project suggests that
>70% of human genome sequences are transcribed into
processed or primary RNAs (1,2). For other species,
numerous novel transcripts are identified by advances in
RNA sequencing techniques (RNA-seq) (3). It remains a
challenge to identify sequence differences between protein-
coding and non-coding transcripts. During the past
5 years, several tools, such as CPC and phyloCSF, have
been developed to classify protein-coding or non-coding
transcripts using information on open reading frame
(ORF), known protein database, or evolutionary signa-
tures (4-6). These approaches have been effective in

identifying long coding transcripts for putative ORF
or peptide hits. However, they are not suitable for
identifying long non-coding RNAs (IncRNAs), which
may contain short protein-like sub-sequences or long
putative ORFs (6,7). Moreover, these available tools
search for the best segment of evolutionary signatures
but may also lead to significant false-positive and false-
negative discoveries, because most of the functional non-
coding RNAs have higher evolutionary conservation
relative to introns, which suggested the conserved
element exists in these non-coding sequences (8), and
in contrast, many newly evolved proteins do not
contain a conserved ORF (7). In addition, for poorly
annotated species or those without whole-genome
sequence, it is hard to define the transcript status using
the existing tools.

To overcome these challenges, we developed Coding-
Non-Coding Index (CNCI) software, a powerful signature
tool, by profiling adjoining nucleotide triplets (ANT), to
effectively distinguish between protein-coding and non-
coding sequences independent of known annotations. In
comparison with the existing tools, CNCI showed better
performance in many aspects, especially for classification
of incomplete transcripts and sense—antisense transcript
pairs. Notably, CNCI performed well uniformly on all
the species of the vertebrates, but relatively poorly for in-
vertebrates and plants, when using human data as training
sets. Because CNCI can classify protein-coding and non-
coding RNAs solely based on sequence intrinsic compos-
ition, it is potentially applicable to a variety of species
without whole-genome sequence or with poorly annotated
information. As an example of application for poorly
annotated species, we tested CNCI on a published
RNA-Seq data set from six organs of orangutan. As a
result, CNCI annotated 7697 novel transcripts as
IncRNAs, which contributed to the first comprehensive
orangutan IncRNA catalog.
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MATERIALS AND METHODS
Data description

For human training sets, protein-coding genes were col-
lected from RefSeq database and long non-coding genes
were collected from Gencode (v11) (9). For mouse testing
sets, both protein-coding and non-coding genes were col-
lected from Ensembl (v65) (10) database. As other testing
sets, gene annotation of other vertebrates or plants was
downloaded from Ensembl (v69) and EnsemblPlants (v16)
(10) databases, respectively. LincRNA catalog was
obtained from human body map (11). Whole-transcrip-
tome sequencing data of the six organs of orangutan
were obtained from the study of David Brawand et al.
(3) and downloaded from Gene Expression Omnibus
under accession code GSE30352. All the data were
summarized in Supplementary Table S1, and the length
distributions of the human and mouse transcript collec-
tions are depicted in Supplementary Table S2.

Calculation of usage frequency of ANT

In this study, we began analyzing the usage frequency of
ANT in coding domain sequence (CDS) and non-coding
RNA sequences. There were 64*%64 ANT, and we
calculated usage frequency of each ANT as follows:
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Where X indicates the ANT, S;(X;) is the occurrence
number of X in sequence i, X;N is X;’s total occurrence
number in the data set, T is all kinds of ANT’s total oc-
currence number in the data set and XF is the usage fre-
quency of the ANT. In human sequences, the usage
frequency of ANT was calculated in 30507 CDS and
18 566 long non-coding transcripts. In mouse sequences,
the usage frequency was calculated in 25316 CDS and
8696 long non-coding transcripts (Supplementary Figure
S1). The log-ratio of the usage frequency of all kinds of
ANT constituted a 64*64 ANT score matrix (Figure la
and b).

XiF =

Utilization of the sliding window to scan each transcript

It is an essential step for our approach to identify the
most-like CDS (MLCDS) region of each transcript. We
first used the sliding window to analyze each transcript by
setting the size of the sliding window and the scan step as
one ANT. To verify the size of the sliding window (repre-
sented by parameter N) to achieve the robust final classi-
fication result, we defined a series of N’s with different
lengths (from 30nt to 300nt, with 30nt as a step-
forward interval). For each of the N sequences, a classifier
was trained with human training data. The sensitivity—
specificity curves of the classification were then calculated

PAGE2 oF 8

on the testing set (Supplementary Figure S2). In our clas-
sification model, N of 150 nt was found to be the robust,
and thus we chose N = 150nt, which is a proper size
longer than small RNAs but shorter than IncRNAs, into
the classification model.

The window scanned each transcript six times to
generate six reading frames. At the same time, CNCI
calculated the sequence-score (S-score) of each window
based on ANT score matrix; thus, a given transcript
produced six discrete numerical arrays. In the process of
sliding window, each transcript was converted into six
arrays, and each array was composed of sliding
window’s S-score of one kind of reading frame. S-score
can reflect the coding ability of each sliding window, and
our initial purpose was to find out sub-sequences
(described as MLCDS earlier in the text) in each of the
six reading frames that have the most ability to code.

Prediction of the MLCDS in each of the six reading
frames

To identify the MLCDS of each reading frame, we applied
a dynamic programming called Maximum Interval Sum
(12). This method can scan one numerical array (which
contains positive and negative numbers), and identify a
consecutive sub-array, which has the largest sum value
than any other sub-arrays even including the whole
array, using the following formula:

j
V= lglgj);n{;a[k]}

Where V is the maximum interval sum in a reading frame,
a[k] is the maximum substring corresponding to V and
i and j represent the start and end position of a[k] in this
reading frame, respectively. To calculate V, i and j, we
introduced a limited local maximum interval sum, b[j],
which is defined as:

i
blj] = max {Za[k}}
—= lk=m

Where m is a variable representing the start position of
b[jl, j is the end position of b[j] and b[j] is the local
maximum interval sum. By combining with the definition
of V, we can deduce that:
V = max b[]]
I<j=n

This formula means that V is the maximum value of b[j]
sets. According to the definition of b[j], we can draw a
conclusion that when b[j—1]>0, b[j]= b[j—1]+a[]]
whatever a[j] is. When b[j— 1] <0, b[j] = a[j] whatever
a[j] is. Thus, we can use the dynamic programming to
scan the numerical array of one reading frame, as stated
in the following rule:

b[j] = max [blj — 1]+all.a[jl}

After the aforementioned processes, six candidate

MLCDS regions from the six reading frames of each
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Figure 1. Illustration of ANT score matrix and CNCI framework. The score of each ANT is calculated for human (a) or mouse (b). The three black
rows or columns represent three stop codons, including UAA, UAG and UGA (corresponding to ATT, ATC and ACT in ¢cDNA sequence,
respectively), which shows low frequency in protein-coding sequence. (¢) The framework of CNCI. The top panel shows the process of a
sequence in a testing set. For a given sequence, six MLCDS regions (represented by six lines) are identified from six reading frames (represented
by six color arrow lines) using a sliding window and dynamic programming algorithm. Then, an MLCDS region with a maximal S-score is selected
to incorporate into an SVM. The bottom panel shows the training and classification process. Reliable protein-coding and non-coding sequences are
used as a training set, and five features are extracted to train SVM, which classifies the incorporating sequence into protein-coding or non-coding

sequence.

transcript were derived, and the maximum one as the
best MLCDS region of the transcript that had a signifi-
cant larger length and higher quality percentage than
the other five candidates was used to perform the feature
extraction. To estimate the quality of the MLCDS,
we compared the MLCDS of all human protein-coding
transcripts with the corresponding true CDS and
evaluated the distribution of overlap degree (Supple-
mentary Figure S3).

Feature extraction and classification model construction

To distinguish protein-coding sequences from the non-
coding sequences, we extracted five features, i.e. the
length and S-score of MLCDS, length-percentage, score-
distance and codon-bias. The length and S-score of

MLCDS were used as the first two features, which assess
the extent and quality of the MLCDS, respectively
(Supplementary Table S3). Moreover, as demonstrated
earlier in the text, protein-coding transcripts possess a
special reading frame obviously distinct from the other
five in the distribution of ANT. We analyzed six
MLCDS candidates outputted by dynamic programming
of the six reading frames for each transcript, with the as-
sumption that there must exist one best MLCDS (as
described earlier in the text); however, this phenomenon
does not generally exist for non-coding transcripts. Thus,
we defined other two features, length-percentage and
score-distance, as follows:

Ml
Length — percentage = ————,1 € (1,2,3,4,5,6)
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Where Ml is the length of the best MLCDS (according to
S-score value) among that of six reading frames, and Y;
represents the length of each six of the MLCDS.

Z?:o (S - Ej)
5

Where S is the S-score of the best MLCDS, and E;j repre-
sents the S-score of the other five MLCDS (Supple-
mentary Table S3).

All aforementioned four selected features could, to
some extent, distinguish the protein-coding and non-
coding sequences and were concordantly higher in
protein-coding transcripts and lower in non-coding tran-
scripts (Supplementary Figure S4). Finally, we included
the fifth feature, the frequency of single nucleotide
triplets, in the MLCDS as the last feature to complement
the construction of a classification model. This feature was
defined as codon-bias, which evaluated the coding-non-
coding bias for each of the 61 kinds of codons (the three
stop codons were ruled out) (Supplementary Figure S5).

To get the positive and negative training sets, we ex-
tracted the five features for each best MLCDS from the
known protein-coding and non-coding transcript data
sets, respectively. We then incorporated these two
training sets into a support vector machine (SVM) as a
model construction (Figure 1c). We used the A Library
for Support Vector Machines (LIBSVM) (13) to train an
SVM model using the standard radial basis function kernel,
where the C and gamma parameters were set by default.

Score — distance = ,] € (1,2,3,4,5)

Identification of orangutan IncRNAs

To identify orangutan IncRNAs, we used the spliced read
aligner TopHat (14) (version V1.3.1) to map all sequenced
reads to the orangutan genome (ponAbe2) with the fol-
lowing parameters: min-anchor = 5, min-isoform-frac-
tion = 0 and the rest set as default. We then aligned
reads of each tissue from TopHat and assembled them
into transcriptome separately by Cufflinks (15) (version
1.0.3) with default parameters (and ‘min-frags-per-
transfrag = 07). After that, we constructed the transcripts
from six tissues and merged them together to constitute
the final transcript set of orangutan and then compared
them with known genes annotated by Ensembl database
(v69). Novel long transcripts (>200bp) that do not
overlap with any known annotation and are localized in
intronic, antisense or intergenic region were filtered by
CNCI and added to the IncRNA catalog of orangutan.

RESULTS
Overview of CNCI methodology

CNCI contains two main steps, including scoring the
sequence and construction of classification model. To
use ANT signature to classify protein-coding and non-
coding sequences, we constructed ANT score matrix that
represents the degree of coding-non-coding bias. First, we
calculated the usage frequency of ANT in true CDS and
non-coding sequences separately (Supplementary Figure
S1) and the log-ratio of the usage frequency between
coding and non-coding sequences for each ANT. For
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human sequences as example, the usage frequency of
ANT was calculated in 30507 CDS and 18566 long
non-coding transcripts. Then, the log-ratio of the usage
frequency of all kinds of ANT constituted a 64*64 ANT
score matrix (Figure la and b). According to this matrix,
S-score of six reading frames for each sequence was
calculated using the following formula:

S =Y {Hp(xn)}
i=1

Where S is the S-score, H,, is the ANT score matrix, X
represents the types of ANT and n is the length of
sequences in nucleotide triplet format.

We next evaluated whether S-score is effective in clas-
sifying coding and non-coding sequences. First, we
compared the S-score distribution of true CDS with that
of other five reading frames of human protein-coding
transcripts, which revealed a distinct pattern, where the
true CDS frame had the highest score among all six
frames (Supplementary Figure S6). Then, we normalized
the length of true CDS and all other five reading frames of
all coding transcripts and plotted the ANT score for each
position. The data showed the same pattern with distribu-
tion of S-score (Supplementary Figure S7). For non-
coding transcripts, the ANT scores across the normalized
length showed a pattern similar to those of the other five
non-coding reading frames of protein-coding transcripts
(Supplementary Figure S7). The results confirmed the
classification ability of S-score and suggested that it is
crucial to first identify MLCDS region and then classify
any given sequences according to the best MLCDS using
these six reading frames of a coming sequence regardless
of whether it is an actual protein-coding transcript or not.

To construct a classification model, we used a sliding
window approach to compute S-score for each reading
frame of a sequence in each of the windows. Then, we
identified the MLCDS for each reading frame according
to the cumulative S-score of the combined windows using
a dynamic programming algorithm. Subsequently, we ex-
tracted these five statistical features from the best MLCDS
that have a maximal S-score among these six reading
frames and incorporated them into an SVM classifier to
train this classification model (Figure 1c).

CNCI performance and comparison with existing tools

We applied CNCI to reliable protein-coding and non-
coding data sets of both human and mouse and assessed
its performance in the case of cross-species. We first trained
the CNCI on human protein-coding and long non-coding
transcripts that showed 97.3% accuracy by 10-fold cross-
validation. For all protein-coding transcripts, the correct
transcriptional reading frame showed a notable peak of the
ANT scores within the CDS region, and had distinct
pattern compared with the other five reading frames
(Figure 2a). The coverage of the maximum MLCDS for
all the protein-coding transcripts was consistent with the
distribution of the ANT scores (Figure 2a), and a high
degree of coincidence between MLCDS and CDS was
observed (Supplementary Figure S3). However, these phe-
nomena did not occur in non-coding transcripts,
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Figure 2. CNCI performance. (a) The top panel shows ANT score distribution (the left y-axis) of these six reading frames for each protein-coding
transcript, whose length is normalized to 1100 nucleotide triplets in the x-axis. Red line represents the correct transcriptional reading frame and other
five lines (blue or green) represent other five reading frames. Green line indicates the distribution of the coverage (the right y-axis) of the MLCDS
region for each protein-coding transcript across the normalized length. The three regions marked by blue, yellow and green indicate the mean length
of 3'UTR (6%), CDS (56.6%) and 5UTR (37.4%), respectively, across the normalized length. The bottom panel shows an example of a gene
NM_021222. (b) The ROC analyses of CNCI, CPC and phyloCSF. The MAE denoted by solid squares is 0.05, 0.11 and 0.28, respectively. (¢) The
accuracy of CNCI, CPC and phyloCSF for classification of different lincRNA lengths. (d) The ROC curves and taxonomic tree of 12 species. The

minimum error rate is marked following the name of species.

suggesting that the CNCI method has robust strength
(Supplementary Figure S7). Next, we applied the learned
regularities to classify objects in a test set, which was col-
lected from mouse protein-coding and non-coding tran-
scripts. We found that the minimum average error
(MAE) (the cutoff that minimizes the average false-
positive and false-negative rates) was 0.05 after the exam-
ination of the receiver operating characteristic (ROC)
curve (Figure 2b). The result showed that CNCI worked
reasonably well on mouse data, although CNCI was
trained on human sequences. Moreover, we also

compared the performance of CNCI with that of other
available tools by re-analyzing the test data set using
CPC and phyloCSF. The ROC curves showed that MAE
of CNCI was lower than that of other two methods (MAE
was 0.11 and 0.28 for CPC and phyloCSF, respectively),
indicating that CNCI is a better tool (Figure 2b). In
addition, we further tested CNCI as well as CPC and
phyloCSF, on an independent long intergenic non-coding
RNA data set from human body map lincRNAs catalog
(11). After removing the overlapping transcripts with
training set, we examined their performance across
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different lengths of transcripts, and found that CNCI
had better performance on all non-coding transcripts
with various lengths, whereas CPC and phyloCSF had
poor performance on transcripts with longer sequences
(Figure 2c¢).

Because both the reference and the reconstructed tran-
scripts in RNA-Seq experiments may be incomplete, we
modified known gene annotation by trimming the exon at
3’- or 5-end of each transcript to generate a modified
transcript data set (to mimic the incomplete RNA-Seq
data) and re-evaluated CNCI performance in these incom-
plete transcripts. There were 28.3 and 45.2% of known
protein-coding transcripts with a complete CDS after
trimming the 5 and 3’ exon, respectively (Supplementary
Table S4). CNCI maintained its high accuracy in the
modified transcript data sets with a mean accuracy of
97.9 and 97.7%., respectively, which was higher than that
of CPC (87.1 and 87.9%, respectively) and phyloCSF
(82.0 and 82.3%, respectively) (Supplementary Table
S5). To address whether CNCI is effective for sense—anti-
sense pairs, we evaluated its performance on antisense
IncRNAs and their protein-coding counterparts, as well
as on coding—coding pairs and non-coding—non-coding
pairs. The results showed that the mean classification
accuracy was 98% for coding—non-coding pairs, 87%
for coding—coding pairs and 97% for non-coding—non-
coding pairs, which was higher than that of CPC (95, 82
and 97%, respectively) and phyloCSF (63, 91 and 55%,
respectively) (Supplementary Table S6, Supplementary
Figure S8). These results demonstrated that CNCI tool
is not only useful for classifying incomplete transcripts
from RNA-Seq data but also has good performance of
classifying sense—antisense transcript pairs.

Application of CNCI to gene sets of multiple species and
RNA-Seq data of poorly annotated species

Because gene annotation in multiple species (such as ver-
tebrates, invertebrates and plants) has been partially
completed by the Ensembl project (16), we tested CNCI
on a series of species based on taxonomy. Interestingly, we
found that using human data as training sets, CNCI per-
formed well uniformly on all the species of the vertebrates
(all MAE< 0.1), but relatively poorly on invertebrates and
plants (MAE is 0.18 and 0.24, respectively) (Figure 2d).
Although the accuracy and integrity of the known gene
annotation varied across different species (i.e. human,
mouse, Caenorhabditis elegans and Arabidopsis thaliana
have higher quality of gene annotation than others), the
distinct features of protein-coding and non-coding se-
quences between vertebrates, invertebrates and plants
were obvious (Figure 2d). These results demonstrated
that it is necessary to use invertebrates and plants as the
training data to classify transcript sequences of the
corresponding species, respectively. Our findings on the
sequence characteristics may reflect changes in evolution-
ary trends of genes between species. Because RNA-Seq
experiments have been carried out for many, although
not well-studied, species,we tested CNCI performance on
a published RNA-Seq data set from six organs of
orangutan (3). Using the integrative approach to
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comprehensively reconstruct transcripts (11,17), we
identified 110 154 expressed multiexonic transcripts, of
which 88563 (80%) had been annotated by Ensembl
database, and 20414 known genes, of which 13678 cor-
responded to 67% known protein-coding genes. CNCI
annotated 7697 novel transcripts as IncRNAs, including
631 intronic, 6029 intergenic and 1037 antisense RNAs
that contributed to the orangutan IncRNA catalog
(Supplementary data set 1). This can be applied to other
species irrespective of the current annotation status.

DISCUSSION

A large number of IncRNAs have been identified,
facilitated by the rapid progress of high-throughput
sequencing technology (11,18). Previous studies have
demonstrated that IncRNAs are involved in diverse
cellular processes, such as cell differentiation, imprinting
control, immune responses, and a growing number of
IncRNAs have been found to be implicated in disease
etiology (19-21). However, for most species, it remains a
challenge to identify IncRNAs from protein-coding genes
because of the lack of necessary information such as whole-
genome sequence, known protein database or conservative
regions. Therefore, it is important to develop a method in-
dependent of known annotations to de novo classify
IncRNAs and protein-coding genes. In this study, we
found a powerful signature, the profile of the pairs of
ANTs, which effectively distinguishes protein-coding or
non-coding sequence regardless of species. Our finding
was consistent with observations that the CDS regions
have been under a variety of competing selection pressures,
especially the translation optimization force that is
associated with the juxtaposition of tRNAs but not
required for non-coding regions (22). It is worth mention-
ing that a previous study used the length of the longest
region in the transcript without stop codons to effectively
discriminate the coding and non-coding sequences (23).
This so-called stop-best feature was included in the ANT
score matrix of our method. Similarly, a recent study
demonstrated that the hexamer usage bias is a powerful
indicator in the assessment of the protein-coding status of
a sequence because of the sequence composition constraints
introduced in the coding sequences by the genetic code (24).
In addition, a gene finding program, GENSCAN, uses a
homogeneous fifth-order Markov model for non-coding
regions and an inhomogencous fifth-order Markov model
for coding regions of transcripts (25).

Although CNCI would be effective for classifying in-
complete transcripts assembled from RNA-Seq data in
most cases, caution should be taken in some cases. In
mammalian genomes, at least 3’ exons of protein-coding
transcripts may not extend significantly into the coding
regions of transcripts. Instead, they may extend for
several kilo base away, and occur abundantly in most of
the RNA-Seq libraries, and thus are deemed as independ-
ent transcript units by most assembly tools. In such cases,
CNCI may misclassify these 3’ (or 5) partial sequences
as non-coding RNAs; however, this misclassification is
not because of the classification method per se, but the
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accuracy of the used assembly method. Therefore, the
accurate query sets containing high-quality assembled
transcripts are requisite to achieve optimal performance
of CNCI.

CNCI is particularly well suited to the transcriptome
analysis of the not well-studied species because it can ef-
fectively classify transcripts solely based on nucleotide
composition of their sequence. The length of sequences
we adopted in this work is >200nt, and thus, theoretic-
ally, any sequence >200bp can be analyzed using our
proposed method. Our method differs from the previous
methods that depend on information of known genome
annotation or sequence conservation (4,5). Therefore,
CNCI has a key advantage over other methods because
genome sequences have been well annotated or completely
sequenced only for limited species so far, and for most
species, only partial or even none of their whole-genome
sequences have been known. For these large number of
species with poorly annotated sequences, it is hard to
use peptide hits or multispecies alignments to classify
sequences into protein-coding or non-coding transcripts,
as different ORF cutoffs may lead to a high false-negative/
positive rate, especially for IncRNAs (7). Although
sequence search approaches for the discrimination
between protein-coding and non-coding transcripts have
been available (26), there is still lack of effective de novo
approach to achieve it. Thus, CNCI is a useful tool, not
only for predicting protein-coding or non-coding
sequences for high-throughput sequencing data of
numerous species but also for analyzing the sequence
features across species as a way to gain insights into the
evolution.
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